Redis进阶
事务
Redis 事务本质:一组命令的集合! 一个事务中的所有命令都会被序列化,在事务执行过程的中,会按照顺序执行!
一次性、顺序性、排他性!执行一些列的命令
Redis事务没有没有隔离级别的概念!
所有的命令在事务中,并没有直接被执行!只有发起执行命令的时候才会执行!Exec
Redis单条命令式保存原子性的,但是事务不保证原子性!
redis的事务:
- 开启事务(multi)
- 命令入队(……)
- 执行事务(exec)
事务执行例子
- 正常执行:
127.0.0.1:6379> multi # 开启事务
OK
# 命令入队
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> exec # 执行事务
1) OK
2) OK
3) "v2"
4) OK
- 放弃事务
127.0.0.1:6379> multi # 开启事务
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> set k4 v4
QUEUED
127.0.0.1:6379> DISCARD # 取消事务
OK
127.0.0.1:6379> get k4 # 事务队列中命令都不会被执行!
(nil)
单个 Redis 命令的执行是原子性的,但 Redis 没有在事务上增加任何维持原子性的机制,所以 Redis 事务的执行并不是原子性的。
事务可以理解为一个打包的批量执行脚本,但批量指令并非原子化的操作,中间某条指令的失败不会导致前面已做指令的回滚,也不会造成后续的指令不做。
监控! Watch (面试常问!)
乐观锁:很乐观,认为什么时候都不会出问题,所以不会上锁! 更新数据的时候去判断一下,在此期间是否有人修改过这个数据,获取version,更新的时候比较 version。( 思考:CAS,ABA,Copy on write 等相关知识点)
Redis测监视测试
127.0.0.1:6379> set money 100
OK
127.0.0.1:6379> set out 0
OK
127.0.0.1:6379> watch money # 监视 money 对象
OK
127.0.0.1:6379> multi # 事务正常结束,数据期间没有发生变动,这个时候就正常执行成功!
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY out 20
QUEUED
127.0.0.1:6379> exec
1) (integer) 80
2) (integer) 20
测试多线程修改值 , 使用watch 可以当做redis的乐观锁操作
127.0.0.1:6379> watch money # 监视 money
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 10
QUEUED
127.0.0.1:6379> INCRBY out 10
QUEUED
127.0.0.1:6379> exec # 执行之前,另外一个线程,修改了我们的值,这个时候,就会导致事务执行失
败!
(nil)
如果修改失败,获取最新的值就好:
Redis.conf 配置文件详解
网络
bind 127.0.0.1 # 绑定的ip
protected-mode yes # 保护模式
port 6379 # 端口设置
通用 GENERAL
daemonize yes # 以守护进程的方式运行,默认是 no,我们需要自己开启为yes!
pidfile /var/run/redis_6379.pid # 如果以后台的方式运行,我们就需要指定一个 pid 文件!
# 日志:
loglevel notice
logfile "" # 日志的文件位置名
databases 16 # 数据库的数量,默认是 16 个数据库
always-show-logo yes # 是否总是显示LOGO
快照 (rdb)
持久化, 在规定的时间内,执行了多少次操作,则会持久化到文件 .rdb
redis 是内存数据库,如果没有持久化,那么数据断电及失!
# 如果900s内,如果至少有一个1 key进行了修改,我们及进行持久化操作
save 900 1 # 15分钟
# 如果300s内,如果至少10 key进行了修改,我们及进行持久化操作
save 300 10 # 5分钟
# 如果60s内,如果至少10000 key进行了修改,我们及进行持久化操作
save 60 10000 # 1分钟
# 我们之后学习持久化,会自己定义这个测试!
stop-writes-on-bgsave-error yes # 持久化如果出错,是否还需要继续工作!
rdbcompression yes # 是否压缩 rdb 文件,需要消耗一些cpu资源!
rdbchecksum yes # 保存rdb文件的时候,进行错误的检查校验!
dir ./ # rdb 文件保存的目录!(默认是在当前配置文件相同目录下)
SECURITY 安全
127.0.0.1:6379> ping
PONG
127.0.0.1:6379> config get requirepass # 获取redis的密码
1) "requirepass"
2) ""
127.0.0.1:6379> config set requirepass "123456" # 设置redis的密码
OK
127.0.0.1:6379> config get requirepass # 发现所有的命令都没有权限了
(error) NOAUTH Authentication required.
127.0.0.1:6379> ping
(error) NOAUTH Authentication required.
127.0.0.1:6379> auth 123456 # 使用密码进行登录!
OK
127.0.0.1:6379> config get requirepass
1) "requirepass"
2) "123456
限制 CLIENTS
maxclients 10000 # 设置能连接上redis的最大客户端的数量
maxmemory # redis 配置最大的内存容量
maxmemory-policy noeviction # 内存到达上限之后的处理策略
1. volatile-lru:只对设置了过期时间的key进行LRU(默认值)
2. allkeys-lru : 删除lru算法的key
3. volatile-random:随机删除即将过期key
4. allkeys-random:随机删除
5. volatile-ttl : 删除即将过期的
6. noeviction : 永不过期,返回错误
APPEND ONLY 模式 aof配置
appendonly no # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下,rdb完全够用!
appendfilename "appendonly.aof" # 持久化的文件的名字
# appendfsync always # 每次修改都会 sync。消耗性能
appendfsync everysec # 每秒执行一次 sync,可能会丢失这1s的数据!
# appendfsync no # 不执行 sync,这个时候操作系统自己同步数据,速度最快!
Redis持久化
Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中的数据库状态也会消失。所以 Redis 提供了持久化功能!
RDB(Redis DataBase)
在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里。
Redis SAVE 命令用于创建当前数据库的备份。该命令将在 redis 安装目录中创建dump.rdb文件。
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。我们默认的就是RDB,一般情况下不需要修改这个配置!有时候在生产环境我们会将这个文件进行备份。
rdb保存的文件是dump.rdb 都是在我们的配置文件中快照中进行配置的!
rdb 恢复
只需要将rdb文件放在我们redis启动目录就可以,redis启动的时候会自动检查dump.rdb 恢复其中的数据!
查看需要存在的位置
127.0.0.1:6379> config get dir
1) "dir"
2) "/usr/local/bin" # 如果在这个目录下存在 dump.rdb 文件,启动就会自动恢复其中的数据
总结
优点:
1、适合大规模的数据恢复!
2、对数据的完整性要不高!
缺点:
1、需要一定的时间间隔进程操作!如果redis意外宕机了,这个最后一次修改数据就没有的了!
2、fork进程的时候,会占用一定的内容空间!
AOF(Append Only File)
将我们的所有命令都记录下来,类似Linux的history,恢复的时候就把这个文件全部在执行一遍!
以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件,但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作。
Aof保存的是 appendonly.aof 文件
默认是不开启的,我们需要手动进行配置!我们只需要将 appendonly 改为yes就开启了 aof !重启redis 就可以生效了!
如果这个 aof 文件有错位,这时候 redis 是启动不起来的,我们需要修复这个aof文件redis 给我们提供了一个工具 redis-check-aof --fix
。
配置
aof 默认就是文件的无限追加,文件会越来越大
appendonly no # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下,rdb完全够用!
appendfilename "appendonly.aof" # 持久化的文件的名字
# appendfsync always # 每次修改都会 sync。消耗性能
appendfsync everysec # 每秒执行一次 sync,可能会丢失这1s的数据!
# appendfsync no # 不执行 sync,这个时候操作系统自己同步数据,速度最快!
# rewrite 重写,
# 如果 aof 文件大于 64m,太大了! fork一个新的进程来将我们的文件进行重写!
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min -size 64mb
总结
优点:
1、每一次修改都同步,文件的完整会更加好!
2、每秒同步一次,可能会丢失一秒的数据
3、从不同步,效率最高的!
缺点:
1、相对于数据文件来说,aof远远大于 rdb,修复的速度也比 rdb慢!
2、Aof 运行效率也要比 rdb 慢,所以我们redis默认的配置就是rdb持久化!
扩展
- RDB 持久化方式能够在指定的时间间隔内对数据进行快照存储
- AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大。
- 只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化
- 同时开启两种持久化方式
在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。 - 性能建议
因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够
了,只保留 save 900 1 这条规则。
如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重写可以改到适当的数值。
如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时倒掉,会丢失十几分钟的数据,启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。
Redis发布订阅
Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息。(微信、微博、关注系统!)
Redis 客户端可以订阅任意数量的频道。
订阅/发布消息图:
第一个:消息发送者, 第二个:频道 第三个:消息订阅者!
当有新消息通过 PUBLISH 命令发送给频道 channel1 时, 这个消息就会被发送给订阅它的三个客户端:
以下实例演示了发布订阅是如何工作的。在我们实例中我们创建了订阅频道名为 redisChat:
redis 127.0.0.1:6379> SUBSCRIBE redisChat # 订阅 redisChat频道
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "redisChat"
3) (integer) 1
现在,我们先重新开启个 redis 客户端,然后在同一个频道 redisChat 发布两次消息,订阅者就能接收到消息。
redis 127.0.0.1:6379> PUBLISH redisChat "Redis is a great caching technique"
(integer) 1
redis 127.0.0.1:6379> PUBLISH redisChat "Learn redis by runoob.com"
(integer) 1
# 订阅者的客户端会显示如下消息
1) "message"
2) "redisChat"
3) "Redis is a great caching technique"
1) "message"
2) "redisChat"
3) "Learn redis by runoob.com"
命令
redis 发布订阅常用命令:
序号 | 命令及描述 |
---|---|
1 | PSUBSCRIBE pattern [pattern …] 订阅一个或多个符合给定模式的频道。 |
2 | PUBSUB subcommand [argument [argument …]] 查看订阅与发布系统状态。 |
3 | PUBLISH channel message 将信息发送到指定的频道。 |
4 | PUNSUBSCRIBE [pattern [pattern …]] 退订所有给定模式的频道。 |
5 | SUBSCRIBE channel [channel …] 订阅给定的一个或多个频道的信息。 |
6 | UNSUBSCRIBE [channel [channel …]] 指退订给定的频道。 |
Redis主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master/leader),后者称为从节点(slave/follower);数据的复制是单向的,只能由主节点到从节点。Master以写为主,Slave 以读为主。(默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点)
主从复制的作用
1、数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
2、故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
3、负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
4、高可用(集群)基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
一般来说,要将Redis运用于工程项目中,只使用一台Redis是万万不能的(宕机),原因如下:
1、从结构上,单个Redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大;
2、从容量上,单个Redis服务器内存容量有限,就算一台Redis服务器内存容量为256G,也不能将所有内存用作Redis存储内存,一般来说,单台Redis最大使用内存不应该超过20G。
电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是”多读少写”。对于这种场景,我们可以使如下这种架构
主从复制,读写分离! 80% 的情况下都是在进行读操作!减缓服务器的压力!架构中经常使用! 一主二从!
环境配置
只配置从库,不用配置主库!
127.0.0.1:6379> info replication # 查看当前库的信息
# Replication
role:master # 角色 master
connected_slaves:0 # 没有从机
master_replid:b63c90e6c501143759cb0e7f450bd1eb0c70882a
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
单机启动三个redis-server模拟:
复制3个配置文件,然后修改对应的信息
1、端口
2、pid 名字
3、log文件名字
4、dump.rdb 名字
修改完毕之后,启动我们的3个redis服务器,可以通过进程信息查看
配置“一主二从”
默认情况下,每台Redis服务器都是主节点; 我们一般情况下只用配置从机就好了!(一主 (79)二从(80,81))
127.0.0.1:6380> SLAVEOF 127.0.0.1 6379 # SLAVEOF host 6379 找谁当自己的老大!
OK
127.0.0.1:6380> info replication
# Replication
role:slave # 当前角色是从机
master_host:127.0.0.1 # 可以的看到主机的信息
master_port:6379
master_link_status:up
master_last_io_seconds_ago:3
master_sync_in_progress:0
slave_repl_offset:14
slave_priority:100
slave_read_only:1
connected_slaves:0
master_replid:a81be8dd257636b2d3e7a9f595e69d73ff03774e
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:14
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:14
# 在主机中查看!
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:1 # 多了从机的配置
slave0:ip=127.0.0.1,port=6380,state=online,offset=42,lag=1 # 多了从机的配置
master_replid:a81be8dd257636b2d3e7a9f595e69d73ff03774e
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:42
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:42
如果两个都配置完了,就是有两个从机的.
注:
真实的从主配置应该在配置文件中配置,这样的话是永久的,我们这里使用的是命令,暂时的!
主机可以写,从机不能写只能读!主机中的所有信息和数据,都会自动被从机保存!
复制原理
Slave 启动成功连接到 master 后会发送一个sync同步命令
Master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行,完毕之后,master将传送整个数据文件到slave,并完成一次完全同步。
全量复制:而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。
增量复制:Master 继续将新的所有收集到的修改命令依次传给slave,完成同步
但是只要是重新连接master,一次完全同步(全量复制)将被自动执行! 我们的数据一定可以在从机中看到!
如果主机断开了连接,我们可以使用 SLAVEOF no one
让自己变成主机!其他的节点就可以手动连接到最新的这个主节点(手动)!如果这个时候老大修复了,那就重新连接!
哨兵模式
主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用。这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式。Redis从2.8开始正式提供了Sentinel(哨兵) 架构来解决这个问题。谋朝篡位的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库。
哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例.
这里的哨兵有两个作用:
- 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。
- 当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。
然而一个哨兵进程对Redis服务器进行监控,可能会出现问题,为此,我们可以使用多个哨兵进行监控。各个哨兵之间还会进行监控,这样就形成了多哨兵模式。
假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover[故障转移]操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线。
测试
我们目前的状态是 一主二从!
配置哨兵配置文件 sentinel.conf
# sentinel monitor 被监控的名称 host port 1
# 后面的这个数字1,代表主机挂了,slave投票看让谁接替成为主机,票数最多的,就会成为主机
sentinel monitor myredis 127.0.0.1 6379 1
启动哨兵:
redis-sentinel kconfig/sentinel.conf
如果Master 节点断开了,这个时候就会从从机中随机选择一个服务器! (这里面有一个投票算法!)
如果主机此时回来了,只能归并到新的主机下,当做从机,这就是哨兵模式的规则!
总结
优点:
1、哨兵集群,基于主从复制模式,所有的主从配置优点,它全有
2、 主从可以切换,故障可以转移,系统的可用性就会更好
3、哨兵模式就是主从模式的升级,手动到自动,更加健壮!
缺点:
1、Redis 不好啊在线扩容的,集群容量一旦到达上限,在线扩容就十分麻烦!
2、实现哨兵模式的配置其实是很麻烦的,里面有很多选择!
哨兵模式的全部配置!
# Example sentinel.conf
# 哨兵sentinel实例运行的端口 默认26379
port 26379
# 哨兵sentinel的工作目录
dir /tmp
# 哨兵sentinel监控的redis主节点的 ip port
# master-name 可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。
# quorum 配置多少个sentinel哨兵统一认为master主节点失联 那么这时客观上认为主节点失联了
# sentinel monitor
sentinel monitor mymaster 127.0.0.1 6379 2
# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供
密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd
# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds
sentinel down-after-milliseconds mymaster 30000
# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,
这个数字越小,完成failover所需的时间就越长,
但是如果这个数字越大,就意味着越 多的slave因为replication而不可用。
可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs
sentinel parallel-syncs mymaster 1
# 故障转移的超时时间 failover-timeout 可以用在以下这些方面:
#1. 同一个sentinel对同一个master两次failover之间的间隔时间。
#2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那
里同步数据时。
#3.当想要取消一个正在进行的failover所需要的时间。
#4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,
slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout
sentinel failover-timeout mymaster 180000
# SCRIPTS EXECUTION
#配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知
相关人员。
#对于脚本的运行结果有以下规则:
#若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
#若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
#如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
#一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
#通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等等),将会去调用这个脚本,这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,一个是事件的类型,一个是事件的描述。如果sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。
#通知脚本
# shell编程
# sentinel notification-script
sentinel notification-script mymaster /var/redis/notify.sh
# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
#
# 目前总是“failover”,
# 是“leader”或者“observer”中的一个。
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh # 一般都是由运维来配置
Redis缓存穿透和雪崩
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一
些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据
的一致性要求很高,那么就不能使用缓存。另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。
缓存穿透(查不到)
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。(相当于没有缓存)
解决方案
- 布隆过滤器
布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;
- 缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源。
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多
的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于
需要保持一致性的业务会有影响。
缓存击穿(量太大,缓存过期!)
这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。
- 设置热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。
- 加互斥锁
分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。
缓存雪崩
缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机!
产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。
redis高可用
这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。(异地多活!)限流降级(在SpringCloud讲解过!)
这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。数据预热
数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
Redis 分布式锁
获取锁的时候,使用 setnx(SETNX key val:当且仅当 key 不存在时, set 一个 key为 val 的字符串,返回 1;若 key 存在,则什么都不做,返回 0)加锁,锁的 value值为一个随机生成的 UUID,在释放锁的时候进行判断。 并使用 expire 命令为锁添加一个超时时间,超过该时间则自动释放锁。
获取锁的时候调用 setnx, 如果返回 0,则该锁正在被别人使用,返回 1 则成功获取锁。 还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
释放锁的时候,通过 UUID 判断是不是该锁,若是该锁, 则执行 delete 进行锁释放。
CAP
CAP 原则又称 CAP 定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、 Partition tolerance(分区容错性),三者不可得兼。
一致性(C):
- 在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
可用性(A):
2. 在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
分区容忍性(P) :
3. 以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在 C 和 A 之间做出选择。